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Abstract. A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam
dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and /
or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically
and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared
to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a
centimeter-scale distance.
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INTRODUCTION

Laser-driven plasma-based accelerators (LPAs) provide a compact way to produce high-energy electron beams [1–3],

but conventional techniques for the disposal of such beams can require large and heavy beam dumps that limit the

compactness of the overall accelerator system. A plasma-based decelerating stage may greatly reduce the required

size of the beam dump by reducing beam energy. Since the deceleration is achieved by collective fields rather than by

scattering, high-energy radiation is not produced during this process. Previous 3D PIC simulations [4, 5] demonstrated

that a plasma-based scheme could be used for deceleration with the same efficacy obtained for acceleration in an LPA,

provided that the beam is at the proper wakefield phase.

In this work we derive an analytical model to study the energy loss of an electron beam propagating in a plasma in

the linear regime. This is done from first principles, for a 1D geometry. The investigation is complemented with the aid

of particle-in-cell (PIC) simulations, which are useful for benchmark purposes and also to extend the analysis beyond

the validity of the derived model. Two cases, passive and active dumping, are presented and compared. In the passive

dumping case, a highly-relativistic electron beam propagates in an initially quiescent plasma, exchanging energy with

the self-excited wakefield. This scenario, usually approached as a scheme to excite a wakefield to accelerate a second

witness [6–8], is studied here emphasizing the energy loss of the beam as it propagates. In the active case the beam

propagates in the wake of a laser pulse, experiencing a net electric field that is a superposition of the self-excited

and laser-driven wakefields. As it is shown in this paper, plasma-based dumping schemes can decelerate high-energy

electron beams to non-relativistic velocities after a few centimeters of propagation in the plasma.

WAKEFIELD EXCITATION

The excitation of wakefields driven either by laser pulses or electron beams in plasma-based accelerators is well

documented in the literature [1–3, 6–9]. In the following we consider a 1D geometry. If the amplitude of such fields is

small when compared to the cold non-relativistic wave breaking electric field E0 = c meωp/e [9], where c is the speed

of light in vacuum, ωp = kpc= (4πn0e2/me)
1/2 is the electron plasma frequency, n0 is the background electron plasma

density and me and e are the electron mass and charge respectively, then the system evolves in the linear regime. In

this 1D, linear regime, the plasma density perturbation δn/n0 ≡ (n− n0)/n0 and electric field Ez/E0 are given by

(∂ 2
ζ + k2

p)δn/n0 =−k2
p (nb/n0)+ ∂ 2

ζ (a
2/2) , (1)

(∂ 2
ζ + k2

p) (Ez/E0) =−kp ∂ζ (nb/n0)− kp∂ζ (a
2/2) , (2)



where ζ ≡ z−ct is the coordinate in the co-moving frame, nb is the electron beam number density and a ≡ eA/mec2 is

the vector potential describing the laser pulse. Considering the quasi-static approximation, the set of Eqs. (1)-(2) can

be solved using the proper Green’s Function to obtain the following analytical solution for the wakefield:

Ez/E0 =−kp

∫ ζ

∞
dζ ′ cos[kp(ζ − ζ ′)] (nb/n0 + a2/2) . (3)

Eq. (3) can be used to calculate the wakefield generated by an electron beam and/or laser pulse with arbitrary profiles,

provided that their amplitudes remain small enough to ensure that Ez/E0 ≪ 1.

PASSIVE BEAM DUMP

To investigate the energy loss of a highly-relativistic electron beam going through a plasma-based decelerating stage,

we consider the rate of energy change in the beam is due to the longitudinal wakefield acting on it, dγ/ds≃−kpEz/E0,

where s ≡ ct is the propagated distance in the plasma. In the passive dumping scheme, the plasma is initially quiescent

and the beam only experiences its self-excited wakefield. Since the beam reaches the decelerating stage with high-

energy, it is initially very stiff and therefore its shape does not change as it propagates. Under this assumption, valid

while the beam remains highly-relativistic, the electric field becomes a function of the co-moving coordinate ζ only,

Ez = Ez(ζ ), and the integration of the equation of motion yelds the following expression for the relativistic factor

γ(ζ ,s) = γ0 − kp s [Ez(ζ )/E0] . (4)

Once γ(ζ ,s) is known, the normalized total energy of the beam U(s) =
∫

dζ γ(ζ ,s)nb(ζ )/n0 can be calculated. For a

beam with γ(ζ ,0) = γ0 , the initial energy is given by U(s = 0) =U0 = γ0

∫

dζ nb(ζ )/n0. Then, from Eq. (4) we can

derive an expression for the beam energy,

U(s)

U0

= 1 − s
kp

∫

dζ [Ez(ζ )/E0] [nb(ζ )/n0]

γ0

∫

dζ nb(ζ )/n0

, (5)

which holds for beams with arbitrary longitudinal profiles. For a flat-top beam, for example, nb(ζ )/n0 = nb/n0 for

0 ≤ ζ ≤ L and zero otherwise, by using Eqs. (3) and (5) the energy is U/U0 = 1− kps{(nb/n0)[1− cos(kpL)]/(γ0L)}.

For a half-sine beam, nb(ζ )/n0 = (nb/n0)sin(πζ/kpL) if 0 ≤ ζ ≤ L and zero otherwise, the beam energy is

U(s)

U0

= 1 − s
π3k2

pL (nb/n0)cos(kpL/2)2

γ0(π2 − k2
pL2)2

. (6)

The passive dumping scheme is also investigated numerically by means of 1D PIC simulations using the code

Warp [10], which self-consistently calculates the beam phase space and wakefield as it propagates. In particular, the

beam energy loss obtained from the simulation is compared to the analytical solution calculated with Eq. (6). Results

are presented in Fig. 1. In the simulation we consider a half-sine beam with normalized density peak nb/n0 = 0.1,

length L = 8.4 µm and uniform initial relativistic factor γ0 = 500, propagating in a plasma with background density

n0 = 3 × 1017cm−3. These parameters are suitable to investigate the energy loss in the linear regime. Fig. 1(a) shows

the spatial configuration of the beam (represented as a red line) and the wakefield Ez/E0 at the beginning of the

propagation (s ≃ 0.7 cm). Fig. 1(b) shows the phase space at this point, with the normalized energy γ/γ0 ≃ 1 along the

beam. As the plasma is initially quiescent and the beam is short (kpL ≤ π/2), the electric field Ez/E0 rises from zero

at the head (kpζ = 0) to its maximum value along the beam at its tail. For this reason, even though the total energy

loss is a linear function of the propagated distance s, beam particles closer to the tail lose energy faster than those

closer to the head. As a consequence, the tail becomes non-relativistic while the head still preserves most of the initial

energy, causing a rapid lengthening of the beam. The PIC simulation shows this behavior, which is not captured by our

model. Fig. 1(c) shows that at s ≃ 9.5 cm the beam becomes long enough to reach the accelerating phase and Fig. 1(d)

confirms that, when this happens, γ/γ0 ≪ 1 near the beam tail while γ/γ0 ∼ 1 at the head. For the given parameters,

a passive decelerating stage should not be longer then 9.5 cm, since beyond this distance particles from the tail reach

the accelerating phase and start gaining energy. Figures 1(e) and 1(f) show that at s ≃ 17 cm the tail regained almost

half of its initial energy (γ/γ0 ∼ 0.5). The last panel of Fig. 1, panel (g), shows the normalized total energy U/U0 as a

function of the propagated distance s. While the beam remains relativistic (γ/γ0 ≃ 1), the energy loss is linear and the



agreement between the PIC simulation (solid line) and the analytical solution calculated from Eq. (6) (dashed line) is

excellent. Once the tail becomes non-relativistic, the evolution of the beam shape as it propagates in the plasma cannot

be neglected and the linear approximation for the energy loss does not hold. This explains why the energy loss from

the PIC simulation departs from the linear analytical model after s ≃ 9.5 cm . After this point the total energy remains

approximately constant, U/U0 ≃ 0.38, due to the balance between energy gain and loss shown in Figures 1(e) and

1(f).

FIGURE 1. (Color online) Passive dumping. An electron beam (red line) with density peak nb/n0 = 0.1, length L = 8.4 µm and

γ0 = 500 propagates in an initially quiescent plasma with density n0 = 3 × 1017cm−3, transferring energy to the self-excited electric
wakefield. Panel (a) shows the beam and wakefield Ez/E0, and panel (b) shows the normalized energy γ/γ0, both at s ≃ 0.7 cm.
While the beam is short (kpL ≤ π/2), Ez/E0 rises from zero at its head (kpζ = 0) to its maximum inside the beam at its tail. As a
consequence, beam particles located closer to the tail lose energy faster than those closer to the head, causing the lengthening of
the beam toward the accelerating phase of the wakefield. Panels (c) and (d) show this happening at s ≃ 9.5 cm. After this point,
the beam length keeps growing and particles experiencing the accelerating field start to gain energy, as shown in panels (e) and (f)
plotted at s ≃ 17 cm. Panel (g) shows the history of the normalized total energy U/U0. While the particles are highly-relativistic,
the agreement between the Warp PIC simulation (solid line) and the analytical solution (dashed line) is excellent. When the beam
reaches the accelerating phase of the wakefield (s ≃ 9.5 cm), the maximum energy loss is achieved.

ACTIVE BEAM DUMP

The smallness of the beam wakefield at its head, which constrains the effectiveness of the passive dumping scheme,

can be overcome in the active dumping scheme by the excitation of a laser-driven wakefield overlapping the beam in

the plasma. By setting the laser amplitude a0 and the beam injection phase one can control the electric field amplitude

and gradient experienced by the whole beam.

The model for the active scheme is developed from the same equation of motion mentioned in the previous

section, dγ/ds ≃ −kpEz/E0, but considering now the electric field as a combination of two components, Ez(ζ ,s) =
Ez(ζ )+Ezl(ζ ,s), where Ez(ζ ) is the beam-driven wakefield derived from Eq. (3), and Ezl(ζ ,s) is the wakefield excited

by the laser,

Ezl(ζ ,s) =
Ezl

E0

sin

(

kpζ +
kps

2γ2
g

)

. (7)

Eq. (7) is obtained considering that in the linear regime (a2 < 1) a sinusoidal plasma wave is excited by the laser. For a

circularly polarized laser pulse with a Gaussian envelope a2 = a2
0 exp(−ζ 2/σ2) and σ = λp/

√
2π [2], the amplitude

of the wakefield is given by Ezl/E0 ≃ 0.76a2
0. Since the beam is highly-relativistic, it propagates faster than the laser

pulse in the plasma and thus the phase slippage [2] between both cannot be neglected. This effect is taken in account

in Eq. (7) by the term kps/2γ2
g , where γg is the relativistic factor associated with the laser group velocity vg. Including



the laser-generated wake Eq. (7), the expression for the energy of a beam with a half-sine profile in the active dumping

scheme is
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Our investigation is complemented with a PIC simulation performed with the same parameters as those of the

previous section but with a laser pulse propagating in front of the beam. The laser strength parameter a0 ≃ 0.38 is

chosen to excite a wakefield with an amplitude comparable to that of the beam. The relative initial phase between the

beam and laser wake is chosen in such a way that the tail of the former is aligned with the beginning of a decelerating

phase of the latter. At this phase, the beam would be simultaneously focused in a 3D geometry. The evolution of the

electric field and beam phase space, as well as the energy loss from the simulation compared to the analytical solution

Eq. (8), are presented in Fig. 2.

Fig. 2(a), plotted at s≃ 0.02cm, shows the initial phase of the beam (red line) and laser wake, and Fig. 2(b) shows the

phase space. Due to the deceleration, γ decreases and the phase slippage toward the laser pulse is progressively reduced

as the beam propagates. Then, depending on its initial energy, the beam can either slip through the decelerating phase

and reach an acceleration region ahead of it, or become slower than the pulse (γ < γg) before crossing the deceleration

region, slipping backward. The PIC simulation shows that this is the behavior observed for the chosen parameters

and, together with beam lengthening, it limits the distance over which it propagates losing energy. Fig. 2(c) shows the

spatial configuration of the beam and the wakefield at s ≃ 5.8cm, where the minimum value for the normalized energy,

U/U0 ≃ 0.03, is observed. Fig. 2(d) exhibits an almost flat phase space profile, with γ/γ0 ≪ 1, resulting from a more

homogeneous beam energy extraction in the active dumping scheme. Figures 2(e) and 2(f), plotted at s ≃ 8 cm, show

that for longer distances the beam starts to gain energy.

Despite the 1D geometry, the qualitative behavior presented in Fig. 2 and discussed in this section can be used to

describe the physics of laser-driven dumping schemes in 3D [4, 5] while the beam is contained in a focusing phase of

the transverse wakefield.

FIGURE 2. (Color online) Active dumping. An electron beam (red line) with density peak nb/n0 = 0.1, length L = 8.4 µm and
initial energy γ0 = 500 (for each electron) is injected in a wakefield excited by a laser pulse with a0 ≃ 0.38, in a plasma with
density n0 = 3 × 1017cm−3.Panel (a) shows the beam loaded in the laser wakefield at the proper phase for the entire beam to be
decelerated. Panel (b) shows the initial phase space. The phase slippage that happens because the beam is faster than the laser pulse
is progressively reduced due to the deceleration. For the given parameters, the beam loses energy and becomes non-relativistic
before slipping through the the decelerating phase of the wakefield. When this happens, the lengthening and the inversion of the
phase slippage direction causes the beam to reach the accelerating phase of the electric field. Panels (c) and (d) depict the spatial
configuration and the phase space at s ≃ 5.8 cm, where the maximum energy loss occurs. After this distance, the beam starts to
gain energy from the accelerating field as shown in panels (e) and (f), plotted at s ≃ 8 cm. Panel (g) shows the history of the total
energy loss normalized by the initial energy, U/U0, calculated by PIC simulation (solid line) and the analytical solution (dashed
line). Differences between the simulation and analytic solution are attributed to non-linearities in the wakefield for a0 = 0.38. At
s ≃ 5.8 cm the beam energy has the minimum value observed, U/U0 ≃ 0.028. Beyond this point, the beam gains energy from
wakefield and is accelerated.



CONCLUSIONS

Plasma-based dumping schemes are a promising technique for reducing the energy of highly-relativistic beams over

centimeter-scale distances. These schemes could be used to drastically reduce the size of conventional dumping

structures, thereby improving the overall compactness of LPAs and making them more suitable for the design

of transportable applications, such as sources of quasi-monoenergetic photon beams [4]. High-repetition-rate LPA

facilities could also take advantage of this technique to mitigate the huge beam dumps required to operate safely in

such regime. In this paper, passive and active dumping schemes were investigated with the aid of analytical models

and PIC simulations in a 1D geometry. In a passive decelerating stage, the beam lost approximately 62% of its initial

energy after propagating 9.5cm for the example considered. For the same parameters, approximately 97% of the initial

energy was depleted in the active scheme after 5.8 cm of propagation. The improvement of the active over the passive

dumping can be clearly understood if one compares Fig. 1(d) with Fig. 2(d): both panels depict the beam phase space

when the maximum energy losses were achieved and, while the energy at the head of the beam was preserved in the

former scheme, it was mostly depleted in the latter.

The results presented in this work are preliminary. Optimizations for improving the total energy loss in the passive

dumping scheme (which is simpler to implement experimentally) and for reaching the maximum energy depletion in

shorter distances in the active case (to avoid the need of a plasma channel to guide the laser) are under investigation.

Plasma tapering to increase the deceleration length, studies to determine the optimal parameters (phasing, laser

intensity, beam loading effects) and the combination of passive and active deceleration are among the options to

achieve such improvements.
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